INTRODUCTION
GALEX observations provide the highest spatial resolution images of the diffuse UV background, with an effective spatial resolution of about 5″. 11 GALEX DIS observations were taken (Table 1) both in FUV (1530-1750Å) and NUV (1750-2850Å) bands for the analysis of diffuse UV radiation from the GALEX archive. These two targets are from an optically thin region. The dust map, (Schlegel et al 1998) of the region and the GALEX field of view (1.2°) of the targets are shown in Fig. 1. E(B-V) variation in the field is 0.01 - 0.05 which corresponds to an optical depth of 0.0812 - 0.406.

Point sources were removed from each GALEX observation using the merged catalogue given in the archive to extract the diffuse signal. The signal to noise was increased by binning the image to 2′ pixels which also enables us to remove unidentified faint sources from the field. Airglow, zodiacal light and dust scattered starlight are the 3 major components of the diffuse radiation. Method of extraction of these components is explained in detail in Sujatha et al. 2009.

ERROR ANALYSIS
The visits of each observation are grouped into two sets to determine possible error in each observation. The results are tabulated in Table 2. The error in the FUV observations of SIRTFFL_06 & 09 are very high compared to others because of the lack of enough good visits which is also clear from its FUV-FUV correlation.

RESULTS AND DISCUSSION
These observations are from an optically thin region. The data shows an intrinsic scatter which varies between 10 to 60 ph cm^{-2} s^{-1} sr^{-1} Å^{-1} both in FUV & NUV, much greater than what can be attributed to photon noise.

We observe that the airglow contribution empirically estimated from the data in the fields is very much depending on the solar activity at the time of observation, however not with a simple linear correlation. In our fields the average airglow contribution varies between 50 to 250 ph cm^{-2} s^{-1} sr^{-1} Å^{-1}.

We find that the total diffuse UV radiation increases linearly with the IR 100 micron intensity, which is from the entire volume of dust due to the low optical depth in the IR. We could also see that the FUV and NUV data in the observed regions are correlating well.

These are preliminary results of our analysis. In depth studies of the correlations we observed, extraction of dust scattered component in this radiation and the modeling of the same to extract the optical properties of dust grains in this region are underway.

REFERENCES

ACKNOWLEDGEMENT
N.V.S. is supported by a DST Young Scientist Award.