The Universe does not exist. It is Mental.

We deduce that, from the effectiveness of 3 extremely simple equations.

Equations, at least, ARE purely mental! Our minds! The first-up equation:

\[s^2 = x^2 + y^2, \]

which is the well-known Pythagorean theorem. Our second equation is

\[s^2 = x^2 + 0^2 + 0^2 - (\Delta t)^2, \]

where \(s \) = the separation in space AND TIME between you (at \(x, 0, 0 \)), snapping your fingers (say), and someone at \((0,0,0)\), at another time, doing the same. It is the core of Albert Einstein’s spectacularly successful theory of relativity, a MINUS sign differentiating the TIME dimension from space dimensions!

FINALLY! Our THIRD equation:

\[s^2 = \frac{x^2}{\left(1 - \frac{2m}{x}\right)} + 0^2 + 0^2 - \left(1 - \frac{2m}{x}\right)(\Delta t)^2. \]

That equation, which predicts the existence of Black Holes, was discovered by Karl Schwarzschild solving Einstein’s opaque field equations (below). If \(m = 0 \), there is NO black hole: our third equation is identical to our second equation! If you are very far from the Black Hole — that is, if your distance \(x \gg 2m \) — our third equation is almost identical to our second equation.

But now please move toward the origin: you start to feel an attraction: (WHAT is AT the origin of coordinates causing a distortion of spacetime which appears as attraction?) Get closer and closer to the origin of coordinates. (Uh oh! When you get to exactly distance \(x = 2m \) the equation momentarily seems to go crazy, but this is merely a coordinate singularity, physically meaningless!) Keep going! Good heavens! \(1 - \frac{2m}{x} \) is now LESS THAN ONE, so the LAST term in our equation is, now, POSITIVE: So it can no longer be TIME! What has become of TIME? Aha: the FIRST term (our direction-of-motion) has also changed in sign! It is NOW NEGATIVE! You are now moving no longer through space, but ONLY THROUGH TIME, so: we KNOW we can never go back!! (Black Holes do exist: ask NASA!) Black Holes are purely mathematical, & THEREFORE THE UNIVERSE ITSELF IS ENTIRELY MENTAL

Richard Conn Henry

General Relativity says spacetime’s warping \(R_{\nu}^{\mu} - \frac{1}{2} g_{\nu}^{\mu} R = \frac{8\pi G}{c^4} T_{\nu}^{\mu} \) ← mass + energy
The Universe does not exist. It is Mental.

The above means nothing to me, for I never learned to read music. I do believe that there are people who can look at that, and, in their minds, HEAR the music!

\[s^2 = \frac{x^2}{\left(1 - \frac{2m}{x}\right)} + 0^2 + 0^2 - \left(1 - \frac{2m}{x}\right)(\Delta t)^2 \]

That? I look at that equation, and without a certain amount of mental effort, the equation means no more to me than does the music.

While I really have no deep interest in the music, I do have intense interest in the equation! So let me try to talk my way through the equation…

The big shock is that when \(x = 2m\) the equation seems to go crazy:

When \(x = 2m\), \[s^2 = \frac{x^2}{0} + 0^2 + 0^2 - 0 \times (\Delta t)^2 = \infty + y^2 + z^2 = \infty \]

OK! We have been assured that this doesn’t really matter, any more than when you walk north from Canada to Russia it really doesn’t matter that, at a certain point, your longitude abruptly changes from 90° to 270°. And Kruskal did nail it, for our equation (though I can’t follow his paper)! (He was on my PhD qualifying committee, but fortunately he didn’t ask me about that!)

OK! When \(x > 2m\) it is easy to see that any effects of \(m\) just fade away.

What about \(x < 2m\)? Let’s try the obvious: \(x = m\) which should suffice:

\[s^2 = \frac{x^2}{\left(1 - \frac{2m}{m}\right)} + 0^2 + 0^2 - \left(1 - \frac{2m}{m}\right)(\Delta t)^2 = \frac{x^2}{(-1)} + 0^2 + 0^2 - (-1)(\Delta t)^2 = -x^2 + 0^2 + 0^2 + (\Delta t)^2 \]

\[s^2 = -x^2 + 0^2 + 0^2 + (\Delta t)^2 \]

The first term (as we have with astonishment noted) has clearly become time. What about the final term? I’m not sure anyone knows! It may be that once you are “in” the black hole, you remain spread over its surface forever.

The Gaussian Curvature of Spacetime for Black Holes is ZERO.

General Relativity says spacetime’s warping \[R^\mu_\nu - \frac{1}{2} g^\mu_\nu R = \frac{8\pi G}{c^4} T^\mu_\nu \leftarrow \text{mass + energy} \]